Preclincal development of a disease modifying small molecule therapy for Alzheimer disease

Dr. David Vocadlo
Simon Fraser University

No medications exist that can stop or even slow the progression for Alzheimer Disease (AD). The two pathological hallmarks of AD are protein aggregates deposited in the brain that are known as tangles and plaques. These aggregates form from inappropriately modified forms of the microtubule associated protein tau and peptide fragments, known as Aβ which are generated by cleavage of the amyloid precursor protein (APP). We have recently pioneered a new potential approach that has been shown to block disease progression in animal models of AD by blocking the toxicity of both of Aβ and tau. Our approach centers on a specialized sugar unit that is found attached to nuclear and cytoplasmic proteins, including both tau and APP. Our multidisciplinary team now aims to address the key remaining challenges that would clear the way for a promising new therapeutic target to advance to the clinic. These findings will enable the rapid advance of these optimized molecules into formal toxicology studies and downstream trials.


David Vocadlo, Gideon Davies, Sharon Gorski, Leonard Foster, Cheng-Xin Gong, Ian Mackenzie, Howard Feldman, Michael Silverman, Ging-Yuek Hsiung, Robert Britton, Cheryl Wellington

Imagine a world without Alzheimer disease.